Valuative tosets

Tom Bachmann, Marc Hoyois, Shane Kelly

Abstract

In this short note we characterise those totally ordered sets which can appear as the set of prime ideals in a valuation ring.

These are the notes of a discussion we had in Cambridge after Marc asked which tosets can appear as Spec of a valuation ring. The result is not new, as Ko Aoki pointed out to me, the main result is Corollary 3.6 of the paper "The spectrum of a ring as a partially ordered set" written by Lewis.

By < we will always mean \leq . By *toset* we mean totally ordered set.

Proposition 1. Consider the functor Spec from valuation rings to the category of tosets.

Spec: { val.rings } \rightarrow { tosets }

A toset T is in the image of this functor if and only if

(Inf) T has infimums,

(SS) T is "successor separated" in the sense that for every $a < b \in T$ there exists $t_0, t_1 \in T$ such that T decomposes as $T = [-\infty, t_0] \sqcup [t_1, \infty]$ and $a \in [-\infty, t_0], b \in [t_1, \infty].$

Example 2. The easiest interesting example of such a toset is the subtoset $(\{0\}\times\mathbb{Q})\cup(\{1\}\times\mathbb{R})\subseteq\{0<1\}\times\mathbb{R}$ adjoin $\pm\infty$ (with the product given the lexicographical ordering). This is the spectrum of $\mathbb{Q}[[t^{\oplus_{\mathbb{Q}}\mathbb{Z}}]]$, cf. the proof of Prop. 7 and Prop. 10. Alternatively we could obtain this toset by considering rational functions on rationally many variables over the rationals $\mathbb{Q}(x_q : q \in \mathbb{Q})$ and defining a valuation $v : \mathbb{Q}(x_q : q \in \mathbb{Q})^* \to \bigoplus_{\mathbb{Q}}\mathbb{Z}$ sending x_q to the generator e_q where $\bigoplus_{\mathbb{Q}}\mathbb{Z}$ is given the lexicographical ordering. The valuation is uniquely determined by the properties v(ab) = v(a) + v(b) and $v(a + b) = \min\{v(a), v(b)\}$ whenever $v(a) \neq v(b)$.

Remark 3. Recall that a topological space appears as the spectrum of a ring if and only if

- 1. it is compact, and T_0 ,
- 2. the compact open sets form a basis,
- 3. compact open sets are closed under intersection,
- 4. every nonempty irreducible closed subset has a unique generic point.

The condition (Inf) corresponds to existence of generic points, and (SS) corresponds to T_0 and compact opens forming a basis. Indeed, closed subsets of the spectrum correspond to subsets of the toset of the form $[-\infty, t]$, i.e., admitting a maximum, and the compact opens correspond to sets $[t_1, \infty]$ such that t_1 is a successor, cf. Prop.14, Prop.15.

Definition 4. Recall that an isolated subgroup of a totally ordered abelian group G is a subgroup H such that: if $a \in H, b \in G$ satisfy $-a \leq b \leq a$ then $b \in H$.

The following proposition is standard.

Proposition 5. Let R be a valuation ring with fraction field K. The valuation

$$v: K^* \to K^*/R^* =: G$$

induces an inclusion reversing bijection between primes of R and isolated subgroups of G. An isolated subgroup H corresponds to the prime $\mathfrak{p}_H = \{r \in R : H < v(r)\}.$

Remark 6. The group G is linearly ordered by $[a] \leq [b]$ if $b/a \in R$.

Proof. Follows directly from v(ab) = v(a) + v(b) and $v(a+b) \ge \min\{v(a), v(b)\}$.

Proposition 7. Every totally ordered abelian group is the value group of some valuation ring.

Proof. Let G be a totally ordered abelian group. The standard choice is Hahn series $\mathbb{Q}[[t^G]] \subseteq \hom_{Set}(G_{\geq 0}, \mathbb{Q})$. This is the set of functions whose support is well-ordered, with addition and multiplication induced in the way suggested by the notation $\sum_{g \in G_{\geq 0}} a_g t^g$ for a function $a_- : G_{\geq 0} \to \mathbb{Q}; g \mapsto a_g$.

Due to the above two propositions we are now reduced to classifying tosets of isolated subgroups in totally ordered abelian groups.

Totally order abelian groups have analogues of Proposition 5 and Proposition 7. **Definition 8.** Say that two positive elements $x, y \in G_{>0}$ of a totally ordered abelian group are commensurate if there exist positive integers n, m > 0such that $x \leq ny$ and $y \leq mx$. Evidently, this is an equivalence relation, and the order relation on G induces a total order on the set $T = G_{>0} / \sim$ of equivalence classes via the canonical projection $G_{>0} \times G_{>0} \to T \times T$. In other words, $G_{>0} \to T$ is a surjection of tosets.

Proposition 9. Let G be a totally ordered abelian group and $p: G_{>0} \rightarrow G_{>0}/\sim:= T$ the toset of commensurate equivalence classes. Then

$$Sub(T) \to Sub(G)$$

$$S \subseteq T \mapsto \{g \in G : p(|g|) < S\} := H_S$$

induces an inclusion reversing bijection between the isolated subgroups of G and the right closed subsets of T.

Here |g| = g if $0 \le g$ and -g if g < 0, and we define $p(0) = -\infty$. By right-closed we mean $t \le t', t \in S \Rightarrow t' \in S$.

Proof. Suppose $S \subseteq T$ is a subset. We will show that H_S is a subgroup. For this, it suffices to show that given $0 < x \leq y$ in H_S we have $x + y \in H_S$ and $y - x \in H_S$. For the first one we observe that $y \leq x + y \leq y + y = 2y$ so p(y) = p(x + y). For the second one we observe $y - x \leq y$ so $p(y - x) \leq$ p(y) < S. Next, H_S is isolated: given $x, y \in G$ with $-x \leq y \leq x$ and $x \in H_S$, we have $p(|y|) \leq p(|x|) < S$. So we conclude that $S \mapsto H_S$ sends subsets to isolated subgroups.

Injectivity. Suppose that S, S' are two right closed subsets. If $S \subsetneq S'$, then there is some $p(|x|) \in S' \setminus S$. Since S is right closed, and $p(|x|) \notin S$, we must have p(|x|) < S, so $x \in H_S$. But $p(x) \in S'$, so $x \notin H_{S'}$. Hence, $S \neq S' \Rightarrow H_S \neq H_{S'}$.

Surjectivity. We make the following sequence of observations.

- 1. The set of left closed subsets of T is bijective to the set of right closed subsets under $L \mapsto S_L = \{t : L < t\}$ with inverse the assignment $S \mapsto L_S = \{t : t < S\}.$
- 2. The map in the proposition is $S \mapsto (-p^{-1}(L_S)) \cup \{0\} \cup (p^{-1}(L_S))$ where $p: G_{>0} \to T$ is the canonical projection.
- 3. Every subgroup H of G is uniquely determined by its set of positive elements $H = (-H_{>0}) \cup \{0\} \cup (H_{>0}).$

4. If H is an isolated subgroup, then $p^{-1}p(H_{>0}) = H_{>0}$. Indeed, if $h \in H_{>0}, g \in G_{>0}$ are commensurate, then $-nh \leq g \leq nh$ for some positive integer n, so $g \in H_{>0}$.

It follows from the above observations that any isolated subgroup H is the image of the right closed subset $S_{p(H>0)} \subseteq T$. Indeed,

$$H = (-H_{>0}) \cup \{0\} \cup (H_{>0})$$

= $-p^{-1}p(H_{>0}) \cup \{0\} \cup p^{-1}p(H_{>0})$
= $-p^{-1}(L_{S_{p(H_{>0})}}) \cup \{0\} \cup p^{-1}(L_{S_{p(H_{>0})}})$
= $im(S_{p(H_{>0})})$

Proposition 10. Every toset T appears as the toset of commensurate equivalence classes of some totally ordered abelian group G.

Proof. Take $G = \bigoplus_{t \in T} \mathbb{Z}$ with the lexicographical ordering.

So now we have reduced the problem to classifying to sets in the image of the functor $RCSub : Toset \to Toset$ which sends a toset to its set of right closed subsets with the relation $A \leq B$ if $A \supseteq B$ (this convention matches the fact that $v(a) \leq v(b) \iff aR \supseteq bR$ for $a, b \in R$).

Proposition 11. A toset is in the image of RCSub if and only if it satisfies (Inf) and (SS) from Proposition 1.

Proof. Consider some RCSub(T) in the image of RCSub. Since right closed subsets are closed under union, the toset RCSub(T) satisfies (Inf). Consider $A \supseteq B$ in RCSub(T). If $A \neq B$, there is some $a \in A \setminus B$. Define $T_0 := T_{\geq a}$ and $T_1 := T_{>a}$. We then have $A \supseteq T_0 \supset T_1 \supseteq B$. Moreover, for every right closed subset $C \in RCSub(T)$ either, $a \in C$ or $a \notin C$, so either $C \supseteq T_0$ or $T_1 \supseteq C$. So RCSub(T) satisfies (SS).

On the other hand, suppose that T satisfies (Inf) and (SS). Define

 $S = \{t \in T : T = [-\infty, t] \sqcup [t_1, \infty] \text{ for some } t_1 \in T\}$

Since T satisfies (Inf) there is a map inf : $RCSub(S) \to T$. We claim this is an isomorphism.

Injectivity. Suppose $A, B \subseteq S$ are two right closed subsets of S with $\inf A = \inf B$. Since they are right closed, either $A \subseteq B$ or $B \subseteq A$. Suppose $A \subseteq B$. If $A \neq B$ then there is some $b \in B \setminus A$. Since $b \in B \subseteq S$, it

has a successor b_1 , satisfying $b < b_1$ and $T = [-\infty, b] \sqcup [b_1, \infty]$. If $b_1 \leq A$ then we have a contradiction by $\inf A = \inf B \leq b < b_1 \leq A$. So there is some $a \in A$ with $a < b_1$. But then $b < a < b_1$ gives a contradiction to $T = [-\infty, b] \sqcup [b_1, \infty]$. So we deduce that A = B.

Surjectivity. It suffices to see that for any $t \in T$, we have $t = \inf\{s \in S : t \leq s\}$. Proof by contradiction. If t is not this inf, then there is some t' with $t < t' \leq S$. But by (SS) there is a successor pair x_0, x_1 with $t \leq x_0 < x_1 \leq t'$. That is, there is $x_0 \in S$ with $t \leq x_0 < t'$. This contradicts $t' \leq s \in S : t \leq s$.

Remark 12. The relationship between prime ideals of a valuation ring R and right closed subsets of the toset of commensurate equivalence classes of its value group is completely transparent. The prime corresponding to a right closed subset of T is precisely the preimage under the composition of the two canonical projections

$$\pi: R \setminus R^* \to G_{>0} \cup \{\infty\} \to T \cup \{\infty\}$$

where $G := K^*/R^*$ and $T := G_{>0}/\sim$. Or in other words, the composition above induces an inclusion preserving isomorphism

$$\operatorname{Spec}(R) \xrightarrow{\sim} RCSub(T).$$

We can read the topology off from the inherent structure of the toset.

Remark 13. The successor pairs $T_0 \supset T_1$ of RCSub(T) correspond precisely to the quasi-compact opens $\operatorname{Spec}(R_{\pi^{-1}T_1})$ of R, or equivalently, the principal closed subsets $\operatorname{Spec}(R/\pi^{-1}T_0)_{red}$. Indeed, for any $f \in R$ with $\pi(f) \in T_0 \setminus T_1$, we have $\operatorname{Spec}(R_{\pi^{-1}T_1}) = \operatorname{Spec}(R_f)$ and $\operatorname{Spec}(R/\pi^{-1}T_0)_{red} = \operatorname{Spec}(R/f)_{red}$.

Proposition 14. Let R be a valuation ring and \mathfrak{p} a non-maximal prime. The following are equivalent.

- 1. $\operatorname{Spec}(R_{\mathfrak{p}}) \subseteq \operatorname{Spec}(R)$ is open.
- 2. $R_{\mathfrak{p}} = R_f$ for some nonunit $f \in R$.
- p is a successor. That is, there exists a prime p₀ ⊃ p such that there are no primes between p₀ and p.

Proof. (1) \Rightarrow (2). If the quasi-compact subscheme $\text{Spec}(R_{\mathfrak{p}})$ is open, then it admits a finite cover of the form $\{\text{Spec}(R_{f_i})\}_{i=1}^n$. But being finite, one of the elements has to be maximal.

(2) \Rightarrow (3). If $R_{\mathfrak{p}} = R_f$, then $\operatorname{Spec}(R)$ decomposes into $\operatorname{Spec}(R_f)$ and $\operatorname{Spec}(R/f)$. The latter, begin closed has a generic point.

 $(3) \Rightarrow (1)$. If \mathfrak{p} is a successor, with predecessor \mathfrak{p}_0 , then as a set, we have $\operatorname{Spec}(R) = \operatorname{Spec}(R_{\mathfrak{p}}) \sqcup \operatorname{Spec}(R/\mathfrak{p}_0)$. Since $\operatorname{Spec}(R/\mathfrak{p}_0)$ is closed, $\operatorname{Spec}(R_{\mathfrak{p}})$ must be open.

Proposition 15. Let R be a valuation ring and $Z \subseteq \text{Spec}(R)$ a closed subset. The following are equivalent.

- 1. $Z = \operatorname{Spec}(R/f)_{red}$ for some $f \in R$.
- 2. Spec(R) $\setminus Z$ is quasi-compact.
- 3. The generic point of Z has a successor (in Spec(R)).

Proof. (1) \Rightarrow (2). If $Z = \operatorname{Spec}(R/f)_{red}$ then $\operatorname{Spec}(R) \setminus Z \cong \operatorname{Spec}(R_f)$.

 $(2) \Rightarrow (3)$. If $\operatorname{Spec}(R) \setminus Z$ is quasi-compact then any cover by basic opens $\{\operatorname{Spec}(R_{f_i})\}$ has a finite subcover, and since the primes of R a totally ordered, is equal to one of the $\operatorname{Spec}(R_{f_i})$. Therefore $\operatorname{Spec}(R) \setminus Z$ has a maximal prime.

(3) \Rightarrow (1). If the generic point \mathfrak{p}_0 of Z has a successor \mathfrak{p}_1 , then $Z = \operatorname{Spec}(R/f)_{red}$ for every $f \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$.

Remark 16. For any toset T there is a canonical injection $T \to RCSub(T)$; $t \mapsto T_{\geq t}$ and its image is intrinsically recognisable as the subtoset of elements of RCSub(T) having an immediate successor

$$T \cong \{T_0 \in RCSub(T) : RCSub(T) = [T, T_0] \sqcup [T_1, \emptyset] \text{ for some } T_1\}.$$

Indeed, for every $t \in T$ we take $T_1 = T_{>t}$, and conversely, a right closed subset T_0 has a successor T_1 if and only if $T_0 \setminus T_1$ is a singleton.

Remark 17. The above suggests that a sensible generalisation of the *rank* of a valuation ring could be the totally ordered set of primes admitting a successor. This would give the valuation ring of Exam.2 the more sensible rank \mathbb{Q} instead of the unwieldy $\{\pm\infty\} \cup (\{0\} \times \mathbb{Q}) \cup (\{1\} \times \mathbb{R})$.